Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076887

RESUMEN

Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery. Past SARS-CoV-2 infection resulted in increased chromatin accessibility of type I interferon (IFN-I) related transcription factors in airway-resident macrophages. Mechanistically, establishment of this innate immune memory required viral pattern recognition and canonical IFN-I signaling and augmented secondary antiviral responses. Past SARS-CoV-2 infection ameliorated disease caused by the heterologous respiratory pathogen influenza A virus. Insights into innate immune memory and how it affects subsequent infections with heterologous pathogens to influence disease pathology could facilitate the development of broadly effective therapeutic strategies.

2.
Vaccines (Basel) ; 11(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36992196

RESUMEN

Powassan virus (POWV) is an emerging tick-borne virus and cause of lethal encephalitis in humans. The lack of treatment or prevention strategies for POWV disease underscores the need for an effective POWV vaccine. Here, we took two independent approaches to develop vaccine candidates. First, we recoded the POWV genome to increase the dinucleotide frequencies of CpG and UpA to potentially attenuate the virus by raising its susceptibility to host innate immune factors, such as the zinc-finger antiviral protein (ZAP). Secondly, we took advantage of the live-attenuated yellow fever virus vaccine 17D strain (YFV-17D) as a vector to express the structural genes pre-membrane (prM) and envelope (E) of POWV. The chimeric YFV-17D-POWV vaccine candidate was further attenuated for in vivo application by removing an N-linked glycosylation site within the nonstructural protein (NS)1 of YFV-17D. This live-attenuated chimeric vaccine candidate significantly protected mice from POWV disease, conferring a 70% survival rate after lethal challenge when administered in a homologous two-dose regimen. Importantly, when given in a heterologous prime-boost vaccination scheme, in which vaccination with the initial chimeric virus was followed by a protein boost with the envelope protein domain III (EDIII), 100% of the mice were protected without showing any signs of morbidity. Combinations of this live-attenuated chimeric YFV-17D-POWV vaccine candidate with an EDIII protein boost warrant further studies for the development of an effective vaccine strategy for the prevention of POWV disease.

3.
J Hepatol ; 78(1): 45-56, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049612

RESUMEN

BACKGROUND & AIMS: A number of genetic polymorphisms have been associated with susceptibility to or protection against non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms remain unknown. Here, we focused on the rs738409 C>G single nucleotide polymorphism (SNP), which produces the I148M variant of patatin-like phospholipase domain-containing protein 3 (PNPLA3) and is strongly associated with NAFLD. METHODS: To enable mechanistic dissection, we developed a human pluripotent stem cell (hPSC)-derived multicellular liver culture by incorporating hPSC-derived hepatocytes, hepatic stellate cells, and macrophages. We first applied this liver culture to model NAFLD by utilising a lipotoxic milieu reflecting the circulating levels of disease risk factors in affected individuals. We then created an isogenic pair of liver cultures differing only at rs738049 and compared NAFLD phenotype development. RESULTS: Our hPSC-derived liver culture recapitulated many key characteristics of NAFLD development and progression including lipid accumulation and oxidative stress, inflammatory response, and stellate cell activation. Under the lipotoxic conditions, the I148M variant caused the enhanced development of NAFLD phenotypes. These differences were associated with elevated IL-6/signal transducer and activator of transcription 3 (STAT3) activity in liver cultures, consistent with transcriptomic data of liver biopsies from individuals carrying the rs738409 SNP. Dampening IL-6/STAT3 activity alleviated the I148M-mediated susceptibility to NAFLD, whereas boosting it in wild-type liver cultures enhanced NAFLD development. Finally, we attributed this elevated IL-6/STAT3 activity in liver cultures carrying the rs738409 SNP to increased NF-κB activity. CONCLUSIONS: Our study thus reveals a potential causal link between elevated IL-6/STAT3 activity and 148M-mediated susceptibility to NAFLD. IMPACT AND IMPLICATIONS: An increasing number of genetic variants manifest in non-alcoholic fatty liver disease (NAFLD) development and progression; however, the underlying mechanisms remain elusive. To study these variants in human-relevant systems, we developed an induced pluripotent stem cell-derived multicellular liver culture and focused on a common genetic variant (i.e. rs738409 in PNPLA3). Our findings not only provide mechanistic insight, but also a potential therapeutic strategy for NAFLD driven by this genetic variant in PNPLA3. Our liver culture is therefore a useful platform for exploring genetic variants in NAFLD development.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fosfolipasas A2 Calcio-Independiente , Humanos , Predisposición Genética a la Enfermedad , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfolipasas A2 Calcio-Independiente/genética , Polimorfismo de Nucleótido Simple , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
4.
Cell Rep ; 40(11): 111321, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103835

RESUMEN

Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Aciltransferasas , Animales , Hepatocitos/metabolismo , Humanos , Lipasa/genética , Lipasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfolipasas A2 Calcio-Independiente
5.
J Virol ; 96(7): e0151621, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35297669

RESUMEN

ADP-ribosylation is a highly dynamic posttranslational modification frequently studied in stress response pathways with recent attention given to its role in response to viral infection. Notably, the alphaviruses encode catalytically active macrodomains capable of ADP-ribosylhydrolase (ARH) activities, implying a role in remodeling the cellular ADP-ribosylome. This report decouples mono- and poly-ARH contributions to macrodomain function using a newly engineered Sindbis virus (SINV) mutant with attenuated poly-ARH activity. Our findings indicate that viral poly-ARH activity is uniquely required for high titer replication in mammalian systems. Despite translating incoming genomic RNA as efficiently as WT virus, mutant viruses have a reduced capacity to establish productive infection, offering a more complete understanding of the kinetics and role of the alphavirus macrodomain with important implications for broader ADP-ribosyltransferase biology. IMPORTANCE Viral macrodomains have drawn attention in recent years due to their high degree of conservation in several virus families (e.g., coronaviruses and alphaviruses) and their potential druggability. These domains erase mono- or poly-ADP-ribose, posttranslational modifications written by host poly-ADP-ribose polymerase (PARP) proteins, from undetermined host or viral proteins to enhance replication. Prior work determined that efficient alphavirus replication requires catalytically active macrodomains; however, which form of the modification requires removal and from which protein(s) had not been determined. Here, we present evidence for the specific requirement of poly-ARH activity to ensure efficient productive infection and virus replication.


Asunto(s)
Coronavirus , Hidrolasas , ARN Viral , Virus Sindbis , Animales , Coronavirus/genética , Hidrolasas/metabolismo , Mamíferos/genética , Poli Adenosina Difosfato Ribosa/metabolismo , ARN Viral/genética , Virus Sindbis/enzimología , Virus Sindbis/genética , Replicación Viral
6.
mSphere ; 6(6): e0071121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851166

RESUMEN

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 µM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.


Asunto(s)
Antivirales/farmacología , Bacterias/metabolismo , Medios de Cultivo/química , Redes y Vías Metabólicas , Microbiota/fisiología , SARS-CoV-2/efectos de los fármacos , Simbiosis/fisiología , Bacterias/química , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bioensayo , Línea Celular Tumoral , Medios de Cultivo/farmacología , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica
7.
Cell Host Microbe ; 29(2): 267-280.e5, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33357464

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen SARS-CoV-2 at two physiologically relevant temperatures along with three related coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-NL63, and HCoV-OC43), allowing us to probe this interactome at a much higher resolution than genome-scale studies. This approach yielded several insights, including potential virus-specific differences in Rab GTPase requirements and glycosylphosphatidylinositol (GPI) anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating coronavirus disease 2019 (COVID-19) and help prepare for future coronavirus outbreaks.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Sistemas CRISPR-Cas , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/metabolismo , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/metabolismo , Coronavirus Humano OC43 , Genes Virales , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33382968

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Asunto(s)
Infecciones por Coronavirus/genética , Estudio de Asociación del Genoma Completo , SARS-CoV-2/fisiología , Células A549 , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/virología , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Mapeo de Interacción de Proteínas
9.
bioRxiv ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33052332

RESUMEN

The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTS: Genome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors.Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles.Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others.TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.

10.
bioRxiv ; 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935098

RESUMEN

The ongoing SARS-CoV-2 pandemic has devastated the global economy and claimed nearly one million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen four related coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43 and SARS-CoV-2) at two physiologically relevant temperatures (33 °C and 37 °C), allowing us to probe this interactome at a much higher resolution relative to genome scale studies. This approach yielded several new insights, including unexpected virus and temperature specific differences in Rab GTPase requirements and GPI anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating COVID-19, and help prepare for future coronavirus outbreaks. HIGHLIGHTS: Focused CRISPR screens targeting host factors in the SARS-CoV-2 interactome were performed for SARS-CoV-2, HCoV-229E, HCoV-NL63, and HCoV-OC43 coronaviruses.Focused interactome CRISPR screens achieve higher resolution compared to genome-wide screens, leading to the identification of critical factors missed by the latter.Parallel CRISPR screens against multiple coronaviruses uncover host factors and pathways with pan-coronavirus and virus-specific functional roles.The number of host proteins that interact with a viral bait protein is not proportional to the number of functional interactors.Novel SARS-CoV-2 host factors are expressed in relevant cell types in the human airway.

11.
PLoS Pathog ; 16(9): e1008927, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997711

RESUMEN

Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Infecciones por Enterovirus/virología , Enterovirus/patogenicidad , Replicación Viral/fisiología , Antivirales/metabolismo , Enterovirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteolisis , Proteínas Virales/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(32): 19465-19474, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32709745

RESUMEN

Infection by malaria parasites triggers dynamic immune responses leading to diverse symptoms and pathologies; however, the molecular mechanisms responsible for these reactions are largely unknown. We performed Trans-species Expression Quantitative Trait Locus analysis to identify a large number of host genes that respond to malaria parasite infections. Here we functionally characterize one of the host genes called receptor transporter protein 4 (RTP4) in responses to malaria parasite and virus infections. RTP4 is induced by type I IFN (IFN-I) and binds to the TANK-binding kinase (TBK1) complex where it negatively regulates TBK1 signaling by interfering with expression and phosphorylation of both TBK1 and IFN regulatory factor 3. Rtp4-/- mice were generated and infected with malaria parasite Plasmodiun berghei ANKA. Significantly higher levels of IFN-I response in microglia, lower parasitemia, fewer neurologic symptoms, and better survival rates were observed in Rtp4-/- than in wild-type mice. Similarly, RTP4 deficiency significantly reduced West Nile virus titers in the brain, but not in the heart and the spleen, of infected mice, suggesting a specific role for RTP4 in brain infection and pathology. This study reveals functions of RTP4 in IFN-I response and a potential target for therapy in diseases with neuropathology.


Asunto(s)
Encéfalo/patología , Interferón Tipo I/metabolismo , Malaria Cerebral/patología , Chaperonas Moleculares/metabolismo , Animales , Encéfalo/parasitología , Encéfalo/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Factor 3 Regulador del Interferón , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Chaperonas Moleculares/genética , Fosforilación , Plasmodium berghei/fisiología , Plasmodium yoelii/fisiología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Fiebre del Nilo Occidental/metabolismo , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/fisiología
13.
bioRxiv ; 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511384

RESUMEN

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.

14.
Nature ; 584(7821): 437-442, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32555388

RESUMEN

During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC50 values) as low as 2 ng ml-1. In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Especificidad de Anticuerpos , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Adulto Joven
15.
Nat Commun ; 9(1): 2090, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844387

RESUMEN

Evidence of male-to-female sexual transmission of Zika virus (ZIKV) and viral RNA in semen and sperm months after infection supports a potential role for testicular cells in ZIKV propagation. Here, we demonstrate that germ cells (GCs) are most susceptible to ZIKV. We found that only GCs infected by ZIKV, but not those infected by dengue virus and yellow fever virus, produce high levels of infectious virus. This observation coincides with decreased expression of interferon-stimulated gene Ifi44l in ZIKV-infected GCs, and overexpression of Ifi44l results in reduced ZIKV production. Using primary human testicular tissue, we demonstrate that human GCs are also permissive for ZIKV infection and production. Finally, we identified berberine chloride as a potent inhibitor of ZIKV infection in both murine and human testes. Together, these studies identify a potential cellular source for propagation of ZIKV in testes and a candidate drug for preventing sexual transmission of ZIKV.


Asunto(s)
Antivirales/farmacología , Berberina/farmacología , ARN Viral/análisis , Enfermedades Virales de Transmisión Sexual/prevención & control , Espermatozoides/virología , Testículo/virología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/transmisión , Virus Zika/crecimiento & desarrollo , Animales , Antígenos/biosíntesis , Proliferación Celular , Células Cultivadas , Chlorocebus aethiops , Proteínas del Citoesqueleto/biosíntesis , Virus del Dengue/crecimiento & desarrollo , Humanos , Interferón Tipo I/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Viral/aislamiento & purificación , Receptor de Interferón alfa y beta/genética , Enfermedades Virales de Transmisión Sexual/virología , Testículo/citología , Células Vero , Replicación Viral/fisiología , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/virología
16.
Nat Microbiol ; 3(4): 481-493, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29531365

RESUMEN

Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus-host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/metabolismo , Chaperonina con TCP-1/genética , Orthoreovirus de los Mamíferos/genética , Ensamble de Virus/genética , Animales , Células CACO-2 , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Células Endoteliales/virología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Orthoreovirus de los Mamíferos/crecimiento & desarrollo , Pliegue de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética
17.
Cell Rep ; 16(5): 1326-1338, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27452455

RESUMEN

Chikungunya virus (CHIKV) and related alphaviruses cause epidemics of acute and chronic musculoskeletal disease. To investigate the mechanisms underlying the failure of immune clearance of CHIKV, we studied mice infected with an attenuated CHIKV strain (181/25) and the pathogenic parental strain (AF15561), which differ by five amino acids. Whereas AF15561 infection of wild-type mice results in viral persistence in joint tissues, 181/25 is cleared. In contrast, 181/25 infection of µMT mice lacking mature B cells results in viral persistence in joint tissues, suggesting that virus-specific antibody is required for clearance of infection. Mapping studies demonstrated that a highly conserved glycine at position 82 in the A domain of the E2 glycoprotein impedes clearance and neutralization of multiple CHIKV strains. Remarkably, murine and human antibodies targeting E2 domain B failed to neutralize pathogenic CHIKV strains efficiently. Our data suggest that pathogenic CHIKV strains evade E2 domain-B-neutralizing antibodies to establish persistence.


Asunto(s)
Linfocitos B/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Aminoácidos/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Envoltorio Viral/inmunología
18.
J Virol ; 90(16): 7248-7256, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27252528

RESUMEN

UNLABELLED: Eukaryotic mRNAs possess a methylated 5'-guanosine cap that is required for RNA stability, efficient translation, and protection from cell-intrinsic defenses. Many viruses use 5' caps or other mechanisms to mimic a cap structure to limit detection of viral RNAs by intracellular innate sensors and to direct efficient translation of viral proteins. The coronavirus (CoV) nonstructural protein 14 (nsp14) is a multifunctional protein with N7-methyltransferase (N7-MTase) activity. The highly conserved S-adenosyl-l-methionine (SAM)-binding residues of the DxG motif are required for nsp14 N7-MTase activity in vitro However, the requirement for CoV N7-MTase activity and the importance of the SAM-binding residues during viral replication have not been determined. Here, we engineered mutations in murine hepatitis virus (MHV) nsp14 N7-MTase at residues D330 and G332 and determined the effects of these mutations on viral replication, sensitivity to mutagen, inhibition by type I interferon (IFN), and translation efficiency. Virus encoding a G332A substitution in nsp14 displayed delayed replication kinetics and decreased peak titers relative to wild-type (WT) MHV. In addition, replication of nsp14 G332A virus was diminished following treatment of cells with IFN-ß, and nsp14 G332A genomes were translated less efficiently both in vitro and during viral infection. In contrast, substitution of alanine at MHV nsp14 D330 did not affect viral replication, sensitivity to mutagen, or inhibition by IFN-ß compared to WT MHV. Our results demonstrate that the conserved MHV N7-MTase SAM-binding-site residues are not required for MHV viability and suggest that the determinants of CoV N7-MTase activity differ in vitro and during virus infection. IMPORTANCE: Human coronaviruses, most notably severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, cause severe and lethal human disease. Since specific antiviral therapies are not available for the treatment of human coronavirus infections, it is essential to understand the functions of conserved CoV proteins in viral replication. Here, we show that substitution of alanine at G332 in the N7-MTase domain of nsp14 impairs viral replication, enhances sensitivity to the innate immune response, and reduces viral RNA translation efficiency. Our data support the idea that coronavirus RNA capping could be targeted for development of antiviral therapeutics.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Coronavirus/enzimología , Genoma Viral/fisiología , Inmunidad Innata/inmunología , ARN Viral/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/virología , Células Cultivadas , Análisis Mutacional de ADN , Humanos , Inmunomodulación , Interferón beta/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis , Mutación/genética , Biosíntesis de Proteínas , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , S-Adenosilmetionina/química , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/química , Replicación Viral
19.
mBio ; 7(3)2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27222471

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy. IMPORTANCE: Mitigation of disease induced by globally spreading, mosquito-borne arthritogenic alphaviruses requires the development of new antiviral strategies. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics and illuminate host pathways required for viral infection. Our study describes the potent inhibition of Chikungunya virus and related alphaviruses by the cardiac glycoside digoxin and demonstrates a function for the sodium-potassium ATPase in Chikungunya virus infection.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Digoxina/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ouabaína/farmacología , ARN Viral/efectos de los fármacos , ARN Viral/genética , Virus del Río Ross/efectos de los fármacos , Virus Sindbis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Virus/efectos de los fármacos
20.
Cell Host Microbe ; 18(1): 86-95, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26159721

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Fiebre Chikungunya/terapia , Virus Chikungunya/inmunología , Inmunización Pasiva/métodos , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/aislamiento & purificación , Quimioprevención/métodos , Virus Chikungunya/fisiología , Modelos Animales de Enfermedad , Humanos , Concentración 50 Inhibidora , Ratones , Unión Proteica , Análisis de Supervivencia , Resultado del Tratamiento , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...